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We study a nonlinear lossless polarizer (NLP), a fiber-based device able to control the polarization of an optical
signal while preserving its energy. The NLP exploits the lossless polarization attraction (LPA) generated by the
Kerr interactions between the signal and a fully polarized continuous wave (CW) pump. By employing a copro-
pagating pump, we show that the effectiveness of LPA depends on the joint action of the Kerr nonlinearity and the
mutual delay between signal and pump. We find the optimal pump wavelength placement and demonstrate that
true LPA occurs only within a limited range of delay values. Thus, we explain why the copropagating NLP is more
flexible and power efficient compared with the traditional counterpropagating NLP. © 2015 Chinese Laser Press
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1. INTRODUCTION
A nonlinear lossless polarizer (NLP) is a fiber-based device
that performs all-optical control of the signal’s state of polari-
zation (SOP) by exploiting lossless polarization attraction
(LPA) [1]. LPA is a Kerr-induced phenomenon such that
any arbitrary signal SOP is attracted toward the SOP of a fully
polarized continuous wave (CW) pump (with the well-known
exception of a signal SOP orthogonal to the pump SOP). In the
last decade, polarization-sensitive Kerr interactions have been
used for a variety of applications, including ultrafast modula-
tion techniques [2]. Since LPA preserves the signal intensity,
NLP represents a promising solution for all-optical signal
processing and telecom applications [3–5].

Indeed, the effectiveness of LPA strongly depends on the
joint action between the Kerr interactions and the mutual
delay, i.e., the walk-off, between signal and pump [6]. LPA
with a counterpropagating pump requires long transient times
(microseconds) and high signal peak power (watts) [7,8] due
to the fixed and relativistic walk-off, and its simulation as a
boundary value problem is time- and memory-intensive [9].
Instead, if signal and pump copropagate, their walk-off can
be tuned and LPA transient times can be optimized for any
given coherence time of the signal SOP [6]. Hence, a copro-
pagating NLP can repolarize even signals with a fast-varying
SOP, by employing lower peak power levels [10].

However, one of the objectives of this work is to show that
despite the fact that the relevant parameters can differ by
orders of magnitude, LPA occurs with the same dynamics
in the two configurations. Here, we characterize numerically
the performance of a copropagating NLP as a function of the
signal–pump walk-off, and find the optimal pump wavelength
that maximizes the effectiveness of LPA for given power
levels. At the same time, we shall cast new light on the central
role of walk-off in the LPA dynamics, by showing that
appropriate tuning of the walk-off is necessary to reach the
polarization attraction regime.

2. LPA
Figure 1 shows the scheme of a copropagating NLP, first con-
ceived in [11], composed of a dispersion-shifted fiber (DSF),
where the tunable pump, with power Pp, is coupled with the
signal at the fiber input. The pump is then rejected by the
optical bandpass filter (OBPF), which selects the signal spec-
trum, at the fiber output. The fiber, with length L � 20 km, is
characterized by a Kerr coefficient γ � 1.99 W−1 km−1,
attenuation α � 0.2 dB∕km, and group velocity dispersion
parameter D � 4 ps∕nm∕km.

The input signal consisted of a stream of individually polar-
ized and intensity-modulated pulses, with peak power Ps and
limited duration Ts. The SOP of each pulse was randomly
chosen on the Poincaré sphere, so that the input signal was
completely depolarized.

Signal and pump were placed at the fiber zero dispersion
wavelength (zdw) λzdw and at wavelength λp, respectively,
so that they propagate at different velocities. Thus, their walk-
off at the fiber output is Td � DΔλL, where Δλ � jλp − λzdwj.
Since we fixed the fiber type and length (as well as the signal
wavelength λzdw), we varied the walk-off Td by tuning the
pump wavelength λp. We varied Δλ from 0 to 20 nm, still keep-
ing signal and pump within the conventional telecom band-
width (C-band). The limit case Δλ � 0 (i.e., Td � 0) is
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Fig. 1. System setup of a copropagating NLP.
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mainly of theoretical interest, since signal and pump spectra
would overlap each other. Anyway, Td � 0 may be obtained
with matched signal and pump group velocities (i.e., placed on
opposite sides of the fiber zdw [12]).

In order to avoid pulse-to-pulse nonlinear interactions
mediated by the pump, the signal pulses must be spaced by
an interval at least equal to the walk-off delay Td [10], as
we did. Hence, the pulse repetition rate R ≤ �Td � Ts�−1
can become relatively small in the case of a large Td (as well
as for a large Ts). However, this is not a limiting factor for our
study, where the main concern is the coherence time of the
signal SOP to be repolarized (which coincides with Ts), rather
than the transmission rate. In the following, we shall discuss
how results presented in this work apply to any transmission
rate of the signal.

The random birefringence of the fiber was taken into ac-
count by its polarization mode dispersion (PMD) coefficient
DPMD � 0.05 ps∕km1∕2 (typical of recent fibers). For the fiber
length used here, DPMD is small enough to make linear PMD
effects negligible [10,13], while the random birefringence is
such that propagation occurs within the so-called Manakov
limit [1,10,13]. Hence, the evolution of the (unattenuated) sig-
nal and pump Jones vectors, Ss�z; t� and Sp�z; t�, is governed
by the following “Manakov equations” [13,14]:
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where † stands for transpose-conjugate, vs;p represent the
group velocities at the signal and pump wavelengths, respec-
tively, and β2s;p are responsible for chromatic dispersion
(although β2s � 0 at λzdw). Moreover, in Eq. (1), Ss;p�z; t�
are expressed in a polarization frame that follows the random
evolution of the birefringence [13]. Note that in Eq. (1), it is
only the last among the three nonlinear terms (i.e., the one
with the †) that yields nonlinear polarization rotations, while
the other two are responsible for self- and cross-phase mod-
ulations not affecting the SOP.

In order to better understand and describe geometrically
the evolution of signal and pump SOPs, we should “translate”
Eq. (1) into Stokes space (as done, e.g., in Refs. [13,14]),
where signal and pump Stokes vectors propagate according
to the following equations (of which Eq. (2) in [1] is a normal-
ized version):
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where × is the vector cross product and ss;p�z; τ� �
s0s;p�z; τ�ŝs;p�z; τ� are the signal and pump Stokes vectors, with
instantaneous SOP ŝs;p and intensities s0s (variable, with maxi-
mum value Ps, for the signal) and s0p � Pp (constant, for the
CW pump). Equation (2) is expressed in a time frame
(τ ≜ t − z∕vref ) moving at the reference velocity vref such that
v−1ref ≜ �v−1s � v−1p �∕2. Within this framework, signal and pump
can be seen as counterpropagating waves [11], despite the fact
that the walk-off velocity vwo, defined as v−1wo ≜ v−1s − v−1p , is
tunable (in a limited range), rather than being fixed and

relativistic. Similar to Eq. (1), ss;p�z; τ� are expressed in a
polarization frame that follows the SOP variations due to
the birefringence. Thus, the Stokes vectors are rotated so
as to equalize the birefringence introduced by the fiber at
the pump wavelength, from the input up to coordinate z
[13]. Equation (2) is spherically isotropic, implying that LPA
occurs in the same way toward any pump SOP [10]. To obtain
the results that follow, we chose a linear horizontal input
pump SOP, i.e., ŝp�0; τ� � ŝ1, without loss of generality.
Despite the fact that Eq. (2) is a geometrically meaningful
model for understanding the nonlinear polarization inter-
actions, the simulation results were obtained by numerically
solving the full Manakov-PMD propagation Eq. (1) in the Jones
domain, including birefringence [not present in Eq. (1)].
Finally, Eq. (1) does not account for the four-wave mixing
(FWM). We verified numerically that FWM effects (such as
pump depletion) are safely negligible at the power levels
employed in this work [10].

3. ROLE OF WALK-OFF IN LPA
Equation (2) is helpful in understanding the mechanism
behind LPA, which we tackle here in a simplified picture.
The plots in Fig. 2 show the evolution of the SOP of a single
pulse along the NLP fiber during the nonlinear interaction
with the pump. Since in Fig. 2 the Stokes vectors are ex-
pressed in the same framework as that of Eq. (2), the time-
averaged pump SOP (blue dots) appears to be aligned with
its input SOP ŝp�0� � ŝ1 (blue vector in figure) at any position
along the fiber. Each of the (red) dots, instead, is the time-
averaged SOP of the signal pulse at a given position
0 ≤ z ≤ L, i.e., it represents the direction of hss�z; τ�i. As an
example, Fig. 2 was obtained by injecting into the fiber a
right-circular polarized pulse (i.e., ŝs�0� � ŝ3; red vector in
the figure). Here, we employ an equal signal and pump peak
power, Ps � Pp � 200 mW.

We start from the simple case where signal and pump
propagate at the same velocity vs � vp, and hence v−1wo � 0;
there is no walk-off and Td � 0. The behavior of the signal
SOP, reported in Fig. 2(a), can be simply explained in this
case, since Eq. (2) allows a closed-form solution [12] from
which it is well known that both the pulse SOP and that of
the pump samples interacting with it evolve along the fiber
according to a “carousel model” [14]. Thus, for Td � 0, signal
and pump rotate around a fixed pivot vector equal to their vec-
tor sum, m ≜ ss � sp, which is hence located midway between
ŝ3 and ŝ1 in the present case of equal pump and pulse peak
power. The circle thus described by the average pulse SOP
(red dots), as seen in Fig. 2(a), can even make the signal
SOP become aligned with the pump SOP (ŝ1) for certain
values of the coordinate z and/or power [12], but still in a
polarization rotation regime. Hence, the trajectory of the
pulse SOP is subject to change with length, power, and input
polarization.

This simple picture is broken whenever walk-off comes into
play [15], as in Figs. 2(b) and 2(c). In order to understand the
signal SOP motion, in this case, imagine adopting the
“carousel model” described above, as an approximate local
solution of Eq. (2). The walk-off between signal and pump
is applied in discrete steps along the fiber in a split-step fash-
ion, i.e., as if Eq. (2) were solved by alternating nonlinear
polarization rotation (carousel) and walk-off. Starting at the
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fiber input (z � 0), first, the signal and pump rotate around
the pivot vector m�0� ≜ ss�0� � sp�0� (constant, since we
assume, in this step, that signal and pump travel at the same
velocity). Then, at the end of each step, assume that the
pump walks past the signal, due to walk-off. Thus, in the
following step, the signal nonlinearly interacts with a “fresh”
portion of the pump, whose SOP is the one it has at the fiber
input, i.e., ŝ1, in our case. Hence, within this second nonlinear
step, signal and pump rotate, according to the carousel model,
around a new pivot m�Δz� ≜ ss�Δz� � sp�0� (where Δz is the
fiber step length). Since ss�Δz� is closer to the input pump SOP
compared to ss�0�, the arc covered by the signal SOP has a
sharper curvature. The signal SOP thus follows arcs of a
circle with increasing curvature and closer to the input pump
SOP, which describe, in the limit (Δz → 0), the spiral
trajectory shown in Fig. 2(b). Such a motion, which we
regularly observed in simulations, is a stable one, i.e., the
signal SOP tends to collapse onto the input pump SOP. We
refer to these conditions as the polarization attraction

regime.

The picture just described holds as long as the walk-off is of
the order of magnitude of the signal pulse duration. The case
of a very large walk-off, shown in Fig. 2(c), can be explained
by the rotation of the pulse SOP around the input pump SOP,
as dictated by the first equation in Eq. (2), which governs the
signal SOP evolution. Anyway, this case differs from the zero
walk-off case, since, for a limited pulse duration and an
extremely large walk-off, it is as if the signal pulse were infi-
nitely short, and hence unable to perturb the pump SOP
[through the second equation in Eq. (2), which governs the
pump evolution], so that sp is practically constant. Thus, with
an extremely large walk-off, the pulse SOP undergoes a
polarization rotation regime, where the rotation is per-
formed around the pump SOP, hence following a larger trajec-
tory, as compared to the zero walk-off case, where rotation
occurs around an intermediate pivot.

As is clearly visible in Fig. 2, the average pulse SOP, starting
at ŝ3, moves stably toward the pump SOP ŝ1, and hence
evolves according to a polarization attraction regime, only
for the intermediate case. On the contrary, the pulse SOP
keeps rotating in a circle, i.e., undergoes a polarization

rotation regime, in the other two cases. The two polarization

rotation regimes never result in stable polarization attraction,
since the pulse SOP evolves in circles (although an illusory
attraction can occur, in the first case, for specific NLP
parameters [12]).

The three dynamic pictures described above were regularly
observed for any input pulse SOP other than ŝs�0� � ŝ3. In par-
ticular, in the polarization attraction regime, the pulse SOP
always stably evolves along a spiral trajectory around the
pump SOP, whereas SOP rotation occurs in the polarization
rotation regimes.

We can thus conclude that LPA is the joint effect of the Kerr
nonlinearity and the walk-off, both occurring between pump
and signal, in carefully balanced amounts [6], while a too large
or too small walk-off simply yields polarization rotation.

4. SCALING LAWS AND THE NORMALIZED
WALK-OFF
The effectiveness of polarization attraction, for the given NLP
setup and parameters, depends primarily on the input pulse
SOP, which can range from being parallel to the pump SOP
(i.e., “already attracted”) to being orthogonal to it (i.e., as
already stated, “impossible to attract”). The overall NLP
performance is thus quantified by the degree of polarization
(DOP) of the output signal [10], evaluated as DOP �
‖E�hss�L; τ�i�‖∕hs0s�L; τ�i, where h·i and E�·� represent time-
and statistical-average operators, respectively, while ‖ · ‖ is
the Euclidean norm. To evaluate the DOP numerically, we
averaged over 100 input pulse SOPs.

Figure 3(a) shows the output DOP of the signal after the
nonlinear interaction with the pump as a function of the
walk-off Td, accumulated along the fiber. Different results
are obtained for signals with different pulse durations, and
Fig. 3 reports the plots obtained for the following values of
Ts�ps�: 1000, 400, 100, and 10. We see from Fig. 3(a) that
an optimal walk-off T�

d (and hence an optimal pump wave-
length λ�p) exists that maximizes the effectiveness of LPA
for each tested pulse duration. While such an optimal T�

d
(and the whole plot) depends on the signal pulse duration
Ts, the best DOP value, DOP� ≅ 0.78, is independent of it.

Fig. 2. Evolution of the average signal SOP along the NLP. Here, the
input signal and pump SOP are rightcircular (ŝ3) and linear-horizontal
(ŝ1), respectively (marked by red and blue vectors, in figure). A (a) too
small (τd � 0) or (c) too large (τd � 32) walk-off induces polarization
rotation, while true polarization attraction only occurs for (b) inter-
mediate values (τd � 5). (See Section 4 for the definition of τd.)
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Moreover, T�
d increases with the pulse duration Ts, meaning

that the effectiveness of LPA fades away, i.e., DOP drops
below DOP�, whenever Td is too large or too small compared
with the duration of the pulse to be attracted (which is con-
sistent with the results discussed in the previous section).

The above results suggest that a scaling rule exists. This is
indeed verified in Fig. 3(b), where the obtained DOP values
are plotted versus a walk-off τd ≜ Td∕Ts, normalized to the
pulse duration. Thus, each curve in Fig. 3(a) can be obtained
by rescaling a single curve, visible in Fig. 3(b), which summa-
rizes the LPA performance for any pulse duration at the
chosen power level. Hence, the curve in Fig. 3(b) demon-
strates that a NLP can effectively operate even on signals with
a short coherence time of their SOP (i.e., a SOP that rapidly
changes from pulse to pulse) and does not require a long
response time [7], provided that a copropagating pump is em-
ployed [10] with an appropriate walk-off. At the same time,
Fig. 3 yields the rule for controlling LPA transients by properly
selecting the pump wavelength. The optimal walk-off is
τ�d ≅ 1.75 and depends on signal power, as discussed further.

The scaling rule, just obtained numerically, can be verified
analytically. By introducing in Eq. (2) the change of time scale
τ0 � τ∕T , so that s0s;p�z; τ0� � ss;p�z; τ∕T� are compressed ver-
sions (if 0 < T < 1) of the signal pulse and of the pump,
s0s�z; τ0� and s0p�z; τ0� obey a set of equations identical to
Eq. (2), provided that the walk-off velocity vwo is replaced
by v0wo � T · vwo. This implies that the output signal evolution
and, hence, its SOP and the corresponding overall DOP
are the same as those obtained by solving Eq. (2) for a
rescaled walk-off velocity v0wo, and hence for a rescaled delay
τ0d � L∕v0wo � Td∕T . As a consequence, by choosing the time-
scaling factor equal to the pulse duration, i.e., T � Ts,

all the curves in Fig. 3(a) coincide, as demonstrated in
Fig. 3(b).

The practical implication of this result is that given the NLP
parameters and the pulse duration, the optimal T�

d ≅ 1.75 · Ts

can be reached by placing the pump at an optimal wavelength
distance Δλ� � T�

d∕�D · L� from the signal. On the other hand,
for a given pump wavelength, and hence a fixed Δλ (and Td),
the effectiveness of the NLP device is optimal only for a pulse
duration T�

s ≅ Td∕1.75. In any case, LPA effectively occurs
only for a limited range of walk-off values; e.g., in the present
case of system parameters, the results in Fig. 3(b) show that
1 < τd < 6 is required to achieve DOP > 0.7. Such a range rep-
resents a sort of polarization attraction interval within
which LPA could be considered effective.

5. ROLE OF POWER IN LPA
Until now, we concentrated our attention only on the role of
walk-off in LPA. In order to study how the polarization attrac-
tion regime changes as a function of the strength of Kerr inter-
actions, we varied the signals’ peak power, Ps and Pp, keeping
them equal, Ps � Pp. The results in Fig. 4 show that by
increasing power, and hence the amount of nonlinearity,
the best DOP, i.e., the NLP performance, increases, while
the optimal walk-off is always about twice the pulse duration
Ts. For a walk-off much smaller than the optimal τ�d (left side
of the plots), all curves overlap. For a walk-off much larger
than τ�d (right side of the plots), the performance of the
NLP increases by increasing the signal power, and apparently
tends to flatten, as a function of τd. However, for very large
normalized walk-off values (τd ≃ 550), the DOP significantly
decreases, even for large powers, as seen in Fig. 4. These
results further prove that an optimal walk-off exists, even
at the largest affordable power levels. While it is true that
the polarization attraction regime turns into the polarization
rotation regime with a smooth transition and without physical
discontinuities, an effective polarization attraction interval

can always be identified, which increases by increasing the
signal power, as shown in Fig. 4. As an example, a DOP ≥
0.7 can be obtained either by fine tuning the normalized
walk-off (1 < τd < 6) for signal power Ps � Pp � 0.2 W, or
from a wide range of values (1 < τd < 600) for signal power
Ps � Pp � 2 W.

Despite the fact that the values of normalized walk-off
tested here, between 0 and 600, are still small when compared
with the walk-off given by the counterpropagating geometry,
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Fig. 3. Performance of a copropagating NLP: output signal DOP ver-
sus the mutual signal–pump walk-off delay Td. (a) Results obtained
for different pulse durations Ts obey a scaling law, so that
(b) DOP only depends on the normalized delay τd ≜ Td∕Ts.
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Fig. 4. Performance of a copropagating NLP: DOP versus τd for dif-
ferent values of the signal power (Ps � Pp). The six tested values are
0.2, 0.4, 0.8, 1.6, 1.8, and 2 W.
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the above argument explains why a counterpropagating NLP
is effective only for long and powerful signals. High signal
power is needed to enlarge the polarization attraction

interval, while long signal durations are needed to decrease
the normalized walk-off, so that it is closer to the polarization
attraction interval. In fact, while a copropagating pump
allows us to control the normalized walk-off τd by tuning
the pump wavelength (Δλ), with a counterpropagating pump,
τd can change only due to the pulse duration Ts. For a counter-
propagating NLP where the fiber length is around 10 km and
power levels are around 1 W (i.e., conditions similar to those
adopted, e.g., in [9]), the polarization attraction regime occurs
only for signals whose duration is at least in the order of 1 μs.
It should be noted, however, that, still referring to the setup
described above, the (relativistic) walk-off is some tens of
microseconds, which makes the counterpropagating NLP
operate far from optimal conditions, since for a 1 μs pulse,
τd is much larger than the optimal walk-off, which is always
in the range of a few pulse durations, even at large power lev-
els. Anyway, as shown in [9], the signal Stokes vector evolves
along a spiral trajectory, in all respects similar to the one
observed in Fig. 2(b). However, for signals whose duration
is much shorter than a microsecond, the counterpropagating
NLP works in the polarization rotation regime, where the sig-
nal Stokes vector rotates around the pump Stokes vector,
which we verified, as depicted in Fig. 2(c).

6. CONCLUSIONS
To conclude, we characterized the performance of a copropa-
gating NLP by measuring the output signal DOP as a function
of the walk-off Td between the attracting CW pump and an
attracted signal pulse. We demonstrated that a scaling rule
exists, so that the optimal performance (DOP) can be
achieved for any pulse duration, provided that the walk-off
is tuned accordingly by placing the pump at an optimal wave-
length. As a consequence, we showed that the polarization

attraction regime occurs only when Kerr nonlinearity and
walk-off are carefully balanced. Although we considered pulse
duration typical of telecom links, the results obtained in this
work apply to modulated signals with any transmission rate
Rb, provided that a proper duty cycle is chosen. In fact, for
a pulse repetition rate R � Rb, the symbol period obeys
Tb ≥ Td � Ts, while the duty cycle of transmitted bits is
d � RbTs ≤ �τd � 1�−1, whose upper bound depends only on
the normalized walk-off τd. Hence, for any Rb, a pulse duration
Ts � d�∕Rb ≤ �Rb�τ�d � 1��−1 can be chosen in agreement with
the optimal normalized walk-off τ�d that optimizes the NLP per-
formance. Since, from Fig. 4, it is typically τ�d ≲ 2, a standard
d � 0.33 guarantees that good repolarization of each single bit
can be achieved, avoiding pulse-to-pulse nonlinear inter-
actions. As an example, in [4] a copropagating NLP was
applied to repolarize a 10 Gbit∕s return-to-zero (33% return-
to-zero) on–off keying signal, whose SOP was randomly

changed from bit to bit. Moreover, we demonstrated that a
copropagating NLP is more flexible and power efficient
compared with a traditional counterpropagating NLP. The
counterpropagating configuration can indeed be seen as the
(suboptimal) limit case of the copropagating configuration
for an extremely large and relativistic walk-off.
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